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Force in Hertzian Electrodynamics 

Introduction 
Hertz’s field equations, which are first-order invariant under the Galilean trans-

formation, are formally the same as Maxwell’s covariant equations, except that every ap-
pearance of the non-invariant operator / t∂ ∂  in the latter is replaced by the first-order in-
variant total time derivative /d dt .  The simplest expression of the latter is 

( )d
d
dt t

∂
= + ⋅∇
∂

v .    (1) 

The “convective” parameter dv  appearing here may be interpreted as field detector (or 
sensor, radiation absorber, etc.) velocity with respect to the observer’s inertial frame.  Us-
ing a subscript “Hz” to denote Hertzian field quantities, the vacuum field equations (in 
Gaussian units) are thus 

  1 4Hz
Hz m

d
c dt c

π⋅
∇× − ⋅ = ⋅

EB j    (2a) 

       1 0Hz
Hz

d
c dt

∇× + ⋅ =
BE     (2b) 

     0Hz∇⋅ =B      (2c) 

           4Hz π ρ∇ ⋅ = ⋅ ⋅E ,    (2d) 

where m s d= +j j j  is a “measured” source current; i.e., measured by a source-current de-

tector that co-moves with the field detector.  Thus mj  is the Maxwell source current sj  

(valid when 0d dρ≡ − ⋅ =j v , the Maxwell case in which the field detector is at rest at the 

observer’s field point), corrected for detector motion, 0d ≠j .  Invariance is manifested 
by the fact that Eqs. (2) are unaltered and  

'Hz Hz=E E     and    'Hz Hz=B B    (3) 
under the Galilean transformation, 

     ' t= − ⋅r r v , 't t= ,    (4) 
where v  is a relative velocity of inertial frames unrelated to dv .  Proofs of these invari-

ances, including '∇ = ∇ , ( / ) ' /d dt d dt= , etc., have been given elsewhere [1-3].  Al-
though aiming for the greatest generality would require us to allow arbitrary detector mo-
tions, we shall here simplify the discussion by considering dv  to be constant (to an ade-
quate approximation).  That allows us to use Eq. (1) with assurance; otherwise, if the ac-
tion of ∇  on dv  were non-zero, extra terms would appear in many of the equations to be 
discussed. 

Analogously to 
        Maxwell Maxwell= ∇×B A ,    (5a) 

Eq. (2c) allows us to introduce a Hertzian vector potential via  
 Hz Hz= ∇×B A ,     (5b) 
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Eq. (2b) then yields 
1 1 0Hz

Hz Hz Hz
dd

c dt c dt
⎛ ⎞

∇× + ⋅ ∇× = ∇× + ⋅ =⎜ ⎟
⎝ ⎠

AE A E .  (6) 

Any quantity having a vanishing curl can be represented as the gradient of a scalar func-

tion, so 1 Hz
Hz Hz

d
c dt

φ+ ⋅ = −∇
AE .  Thus the Hertzian electric field is related to potentials 

by 

       1 Hz
Hz Hz

d
c dt

φ= −∇ − ⋅
AE ,    (7) 

an invariant expression for HzE , provided that in Hertzian theory  

         'Hz Hzφ φ=        and      'Hz Hz=A A .    (8) 
In Maxwell’s theory we know that the definition of electric field is force per unit 

charge.  Thus the force on charge q is Maxwellq ⋅E .  This, however, is only the electric 
force, seen as a partial force.  The full physical force on the charge is not given directly 
by any solution of the field equations but must be separately postulated as the “Lorentz 
force,” 

         ( )Lorentz Maxwell Maxwellq= ⋅ + ×F E u B ,   (9a) 

where 

        1 Maxwell
Maxwell Maxwell c t

φ ∂
= −∇ − ⋅

∂
AE    (9b) 

and where u  is the velocity of charge q with respect to the observer’s inertial frame.  
That Maxwell’s field equations, while defining field quantities in terms of force on elec-
tric charge, fail to tell us anything directly about the whole physical force on an electric 
charge may be viewed as a flaw.  The necessity in Maxwell’s theory to introduce an extra 
“force postulate” is certainly not impressive evidence of logical economy.  It creates a 
gulf between electromagnetism and electrodynamics that might be judged aesthetically 
displeasing.  Let us see whether the Hertzian invariant formulation of electromagnetism 
can do better. 

Hertzian Force 
Since the electric field is traditionally defined as the force on unit electric charge, 

it seems anomalous in Maxwell’s theory to say instead that such force involves some-
thing additional (viz., the magnetic component of the Lorentz force).  If in Hertzian the-
ory the whole of electrodynamics is to be contained in electromagnetism, the simplest 
realization of this objective requires that the full physical force on purely-electric charge 
q be expressible in terms of the purely-electric field solution of the field equations, 

    Hz Hzq= ⋅F E .    (10) 
To say that the force on q is something else is inconsistent both with the above verbal 
definition of electric field and with logical economy.  Since MaxwellE  and HzE  are solu-
tions of differently-parameterized field equations, the possible validity of (10) cannot be 
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ruled out a priori.  Let us therefore examine how such a “Hertzian” force is related to the 
Lorentz force.  From  (7) we see that (10) implies 

   1 Hz
Hz Hz

dq
c dt

φ
⎛ ⎞

= ⋅ −∇ − ⋅⎜ ⎟
⎝ ⎠

AF ,   (11) 

wherein the potentials are source-related and presumably differ from those of Maxwell’s 
theory at most by a gauge transformation.  From Eq. (1) we have 

    ( )1 Hz
Hz Hz d Hzq

c t
φ

⎡ ⎤⎛ ⎞∂
= ⋅ −∇ − ⋅ + ⋅∇⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

AF v A .  (12) 

The vector identity [4]  
       ( ) ( ) ( ) ( ) ( )∇ ⋅ = ⋅∇ + ⋅∇ + × ∇× + × ∇×v A v A A v A v v A   

reduces in our present special case of constant d=v v , with Hz→A A , to 

    ( ) ( ) ( )d Hz d Hz d Hz− ⋅∇ = × ∇× −∇ ⋅v A v A v A .  (13) 

Inserting this in (12), we have 

 ( ) ( )( )1 1Hz
Hz Hz d Hz d Hzq

c t c
φ

⎡ ⎤∂
= ⋅ −∇ − ⋅ + ⋅ × ∇× −∇ ⋅⎢ ⎥∂⎣ ⎦

AF v A v A . (14) 

Since we can identify our “field detector” (which has velocity dv  in the laboratory iner-
tial system) with the charge q (which has similarly-defined velocity u  appearing in Eq. 
(9a)), it is clear that d =v u  holds.   From this we see that (14) is beginning to acquire the 
appearance of the Lorentz force, Eq. (9), but with an extra force term  

      ( )Extra d Hz
q
c

= − ⋅∇ ⋅F v A .    (15) 

To find out more about this, let us subject (14) to a gauge transformation, 
1 Hz

Hz Hz c t
φ φ ∂Λ

→ − ⋅
∂

,  Hz Hz Hz→ +∇ΛA A ,  (16) 

where ( ), , ,Hz Hz x y z tΛ = Λ  is an arbitrary “gauge” function.  When these substitutions 
are made in (14), that equation reduces to 

( )( ) ( ) ( )1 1 1 1Hz
Hz Hz d Hz d Hz d Hzq

c t c c c
φ

⎡ ⎤∂
= ⋅ −∇ − ⋅ + ⋅ × ∇× − ⋅∇ ⋅ − ⋅∇ ⋅∇Λ⎢ ⎥∂⎣ ⎦

AF v A v A v . (17) 

From the fact that HzΛ  has not canceled from (17) we see that the extra force term (15) 
breaks the gauge invariance or “gauge symmetry” that characterizes Maxwell’s theory.  
This means that in Hertz’s theory gauge is no longer arbitrary, but has a physical signifi-
cance.  In order to restore an appearance of gauge symmetry by eliminating the extra 
force term (15), we see by inspection of (17) that a natural choice of HzΛ  is  

  Hz Hz∇Λ = −A .    (18) 

This evaluates HzΛ  as a line integral of the magnitude of HzA  along the (reversed) direc-
tion of that vector, 

           Hz Hz dΛ = − ⋅∫A s ,    (19) 
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and leaves the gauge indeterminate within an additive constant.  The consequence of this 
gauge choice is a physical force of the form 

           ( )( )1 1Hz
Hz Hz d Hzq

c t c
φ

⎡ ⎤∂
= ⋅ −∇ − ⋅ + ⋅ × ∇×⎢ ⎥∂⎣ ⎦

AF v A ,  (20a) 

or, with (5b), 

   ( )1 1Hz
Hz Hz d Hzq

c t c
φ

⎡ ⎤∂
= ⋅ −∇ − ⋅ + ⋅ ×⎢ ⎥∂⎣ ⎦

AF v B ,  (20b) 

which has the form of the familiar Lorentz force law, Eq. (9), with the Hertzian potential 
quantities formally appearing for the Maxwellian ones.  Thus by a suitable gauge choice 
it is possible to relate the Hertzian field quantities to observable force on a charge q by 
the same formal law as that traditionally employed to accomplish the same thing in 
Maxwell’s theory.  It is reasonable that this should be possible, since the Hertzian theory 
is a covering theory of the Maxwellian, in the sense that in the special case 0d →v  we 

have Hz Maxwellφ φ→  and Hz Maxwell→A A , and similarly for the field quantities. 
It remains an open question – which we must leave unresolved here – whether the 

gauge choice that accomplishes this elimination of the “extra” force (15) is the physically 
valid one.  That is, Hertzian theory is not fundamentally either gauge-symmetrical or 
space-time symmetrical, and thus leaves open the possibility that the observable physical 
force on a charge might differ from the Lorentz force by a term proportional to dv .  In 
other words, some experiment might conceivably be found that would render the alleged 
extra force term (or some other gauge-dependent force effect) observable. 

Concerning the possibility of an extra force of the form (15), corresponding to the 
gauge choice HzΛ =  constant or zero [cf. (17)], we observe that ExtraF  is the gradient of a 
scalar quantity.  Such a gradient, when integrated around any closed circuit (equivalently 
to the integration of an exact differential), must yield zero.  Hence the extra force could 
not manifest itself in any experiments employing currents flowing in closed circuits.  
Maxwell maintained that currents flow only in closed circuits … but this overlooks 
charge motions in plasmas and possibly in antennas.  (This latter may be controversial, 
since some physicists view transmitting and receiving antennas together as constituting 
closed circuits.)  In any case it would not be trivial to devise a crucial experiment to test 
the extra gradient term in (14), and we shall not attempt to do that here.   

The important aspects of the Hertzian force law (14) are (a) that it is deduced di-
rectly from the Hertzian field equations, without additional postulation, (b) that it is not 
distinguishable by ordinary laboratory experiments from the empirically well-confirmed 
Lorentz force law for the total force on charge q, (c) that it can be reduced by a gauge 
transformation to a formal analog, Eq. (20), of the Lorentz law, and (d) that the Hertzian 
electric field, as given by Eq. (7), produces the full physical force on the charge, Eq. (10), 
in agreement with the simple physical interpretation (or definition) that HzE  is the total 
force on unit charge.  In short, in Hertzian theory there is no fundamental distinction be-
tween electromagnetism and electrodynamics, because a complete law of force on electric 
charge is provided by the electric solution of the field equations.  This electric HzE -field 

solution, through the /Hzd dtA  of Eq. (7), automatically incorporates velocity-dependent 
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(magnetic) effects.  There is no separate “magnetic” force, except upon magnetic mono-
poles, which are not considered. 

We note that in Eq. (14) two gradient terms appear.  These can be combined to 
form what we might at first guess to be a “physical potential energy,” denoted by V; i.e., 

     1 ( )dV q
c

φ⎛ ⎞= ⋅ + ⋅ ⋅⎜ ⎟
⎝ ⎠

v A . (?)   (21) 

In order to investigate this as a possible physical potential energy, it will be useful to take 
a brief excursion into the territory of the Lagrangian method. 
 

Lagrangian Formalism 
From the well-known theory of the Lagrangian method [5] we shall borrow only 

two relations, first 
      L T U= − ,     (22) 

which defines the Lagrangian function L in terms of kinetic energy T and a “generalized” 
Lagrangian potential energy U, which in the case of velocity-dependent potentials gener-
ally differs from the physical potential energy V.  Secondly, the Legendre transformation, 

    kk
k

LH T V q L
q
∂

= + = ⋅ −
∂∑ ,   (23) 

where H is the Hamiltonian, here interpreted as the total physical energy, and the kq  are 
Lagrangian generalized velocity components.  Since U is non-physical (in the case of ve-
locity-dependent potentials), its determination is something of a guessing game.  Let us 
guess a scalar function of the form 

       ( )d
kU q
c

φ⎛ ⎞= ⋅ + ⋅ ⋅⎜ ⎟
⎝ ⎠

v A ,    (24) 

where k is an undetermined constant.  We may simplify to a one-dimensional equivalent 
problem by introducing a scalar coordinate r aligned along the direction of the vector dv , 
so that dv  has the magnitude r .  This allows us to make the replacement  

( )d rA r⋅ ↔ ⋅v A ,      (25) 
where rA  does not depend on r .  Confining attention to the non-relativistic case, we have 

( ) 21/ 2T m r= ⋅ ⋅ , where m is the mass of the charge q that we consider to act as our “field 
detector.”  Then from (22), (24), and (25) 

         2(1/ 2) r
kL m r q A r
c

φ⎛ ⎞= ⋅ ⋅ − ⋅ + ⋅ ⋅⎜ ⎟
⎝ ⎠

,   (26) 

whence  

        r
L k qm r A
r c
∂ ⋅

= ⋅ − ⋅
∂

.    (27)  

From (23), written as LH r L
r
∂

= ⋅ −
∂

, with the help of (26) and (27), we get 

     2 2(1/ 2)r r
k q k qH m r A r m r q A r

c c
φ⋅ ⋅

= ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅  

or 
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2(1/ 2)H T V m r q φ= + = ⋅ ⋅ + ⋅ .   (28) 
Notice that the k-terms have canceled; so k can be assigned any value, including 

zero.  Thus our guess embodied in Eq. (21), that the physical potential energy V (defined 
as that which enters the Hamiltonian) might contain a term proportional to ( )d ⋅v A  is 

disproven.  Eq. (28) indicates that, regardless of whether such a term is present in or ab-
sent from the Lagrangian generalized potential energy U, the physical potential energy V 
can only be 

      V q φ= ⋅ .     (29) 
The customary Lagrangian derivation [5] of the Lorentz force law assumes 

1k = − .  An attempt might be made to justify this choice by the following argument, 
which appeals to physics rather than to any intrinsic feature of the Lagrangian formalism:  
The quantity in Eq. (27) is recognized as the Lagrangian generalized or “canonical” mo-
mentum, 

     r r
L k qp m r A
r c

∂ ⋅
= = ⋅ − ⋅
∂

, 

and the term in rA  is identified as the physical momentum of the electromagnetic field.  
With the choice 1k = −  this field momentum may be considered to add to the mechanical 
momentum m r⋅ , so 

       ( )/r rp m r q c A= ⋅ + ⋅   
is validated, apparently, by endowing the canonical momentum rp  with a physical sig-
nificance as total momentum of field plus particle.  However, since the Lagrangian gen-
eralized potential energy U is nonphysical, one is hardly prepared to learn that the corre-
sponding Lagrangian generalized (“canonical”) momentum rp  is physical.  In fact, if one 
learns this, one then has to unlearn it immediately, because in classical mechanical theory 
(both relativistic and non-relativistic) [5], and in Dirac’s electron theory, it is actually mr  

that is treated as physical – since, to describe the advent of a field, it is r r
qm r p A
c

⋅ = − ⋅  

that is substituted for rp  in the field-free expression for total energy.  That is, field mo-
mentum is subtracted from (not added to) canonical momentum to get physical momen-
tum of the particle. 

All that can be said, finally, concerning (21) is that it was a bad guess about the 
physics.  In view of (29) and the assumption that H is total physical energy, it would ap-
pear that the extra term in ( )d ⋅v A  cannot be part of a physical potential energy.  Does 

this mean that the extra force term in our “Hertzian” force law (15) is non-physical?  If 
so, it can be disregarded – and in that case the Hertz and Lorentz force laws become for-
mally identical.  We have already noted that this alleged extra force term would be diffi-
cult to test by laboratory experiments (impossible by use of currents flowing in closed 
circuits).  If the term is indeed non-physical, as our failed attempt to incorporate it in a 
physical potential energy would indicate, then in principle no experiment could reveal it.  
The foregoing considerations may be viewed as constituting an independent quasi-
physical argument in favor of the gauge choice (18), which eliminates entirely the extra 
force term (15) in Hertzian theory. 
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We are assuming that H in electromagnetic theory represents total observable en-
ergy.  What can be said about this?  With velocity-independent potentials the Lagrange 
method is known to be reliable.  But there is no question – when one deals with velocity-
dependent potentials – that the U-function of the Lagrange method is non-physical and 
thus amounts to a contrivance – as does the Lagrangian itself.  It seems evident that the 
canonical momentum is also not the physical momentum, since it includes a “field mo-
mentum” term that does not survive to make a contribution to the total physical energy 
(28).  Why is field momentum absent from total energy?  This may be the case because it 
is permissible to think of the force-exerting field agent, the photon, either as “virtual” – in 
which case it manifests no physical attributes – or as possessed of no degrees of freedom 
independent of matter – in which case it can affect the momentum of its source and of its 
sink, but not of intermediate space.  In accord with the spirit of quantum mechanics, there 
is no way to capture or reify this alleged momentum while it is acting across space, ex-
cept to replace “space” with a detector.  And if L is a non-physical contrivance and H 
does not represent total physical energy, what has become of the physics in all this carni-
val of formalism?  It would seem best to hold onto H as total energy and to revise our 
last-century picture of electromagnetic force as “propagating” – i.e., as energy flying (lo-
cally and causally) through space – such a picture being a metaphysical imposition at 
odds with all else we have learned about quantum processes.  

It is worth mentioning that in Eq. (6-31) of his book [5] Goldstein expresses the 
Lorentz force in a form equivalent to 

    ( )1 1
Lorentz

dq
c dt c

φ
⎛ ⎞

= ⋅ −∇ − ⋅ + ⋅∇ ⋅⎜ ⎟
⎝ ⎠

AF v A .   (30) 

Thus, had he not been blinded by the science of covariance he might have discovered the 
science of invariance, simply by recognizing the closed-circuit unobservability of the last 
gradient term … for with its elimination Eq. (30) reduces to our presently proposed Eq. 
(11), the Hertzian invariant form. 

We must leave the subject here with the tentative conclusion that the Hertzian and 
Lorentz force laws are probably for all observational purposes physically equivalent.  If 
that is not correct, then experiment must be able to decide whether the Hertzian Eqs. (11) 
and (14) should be modified by addition of the final gradient term in (30) … which is the 
same question as whether Eq. (30) should be modified by omission of its last term.  By 
one way of looking at it, the physicality of the Lorentz force law depends on the ob-
servability of the last term in (30) – for, failing such observability, it would become 
physically permissible to omit that term entirely – in which case the Hertzian and Lorentz 
force laws would become not merely predictively equivalent but formally identical. 

Hertzian vs. Maxwellian Fields 
To those reared on covariance, the invariance claimed in Eq. (3) may seem 

counter to known fact.  Thus the field “scramblings” (whereby electric fields can “be-
come” magnetic fields or linear combinations of both kinds of fields) asserted by covari-
ance are today widely accepted as an inherent feature of the field; i.e., a fact about the 
underlying physics.  But what substantiates this “fact” is not the changing of one kind of 
field into another … what changes in every case is the state of motion of the field detec-
tor.  The field itself, conceived as ding an sich – something “out there” that is independ-
ent of the state of motion of its detector – does not exist.  (This does not imply that there 
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is “nothing” out there … no ontological profundity is intended.)  When we say that one 
inertial observer “sees” one kind of field, and another inertial observer sees another kind, 
what we are in fact saying is that field detectors in different states of motion (each co-
moving with a different inertial observer) detect different mixes, or covariantly-related 
scramblings, of components of the field at a common “field point” that is momentarily 
shared in space and time.  The two observers disagree about what the field “is” at that 
point, because they are measuring the “same field” with differently-moving instruments.  
In a sense, each instrument may be said to create its own field.  (This is a variant of 
Bohr’s famous dictum, “The apparatus as a whole makes the measurement.”)  However, 
if instead we consider a given state of motion, defined by that of a single field-detection 
instrument, then all observers must agree on the readings of that chosen instrument; so in 
this case there is no ambiguity or multi-valuedness.  We can then speak of an observer-
independent uniqueness or invariance of the field. 

In order to bring out explicitly and quantitatively this invariant aspect of field de-
scription it is necessary to abandon covariant (Maxwellian) field equations and substitute 
invariant ones.  This is what Hertz’s mathematics did at the first order, to which we con-
fine attention here.  To recapitulate:  In Maxwell-Einstein physics each inertial observer 
is equipped with his own “private” field detector, permanently at rest at his own co-
moving field point.  When the field points of two such relatively-moving observers mo-
mentarily coincide – implying collision of their instruments – the measured field compo-
nents, as displayed by the two instruments, are two sets of numbers related covariantly 
and quantified by Maxwell’s field equations, considered valid in both inertial systems.  
(It is this dual validity that underpins the constancy of “c” in all inertial systems – Ein-
stein’s second postulate.)   

By contrast, in Hertzian physics there is only one “public” field detector under 
consideration, and there are any number of observers, who need not be inertial – but may 
for convenience be considered so.  In order to quantify, by Hertz’s field equations, the 
readings at any moment of that unique “public” instrument (idealized as a point in space), 
we may picture a multiple coincidence of field points (co-moving with each of two or 
more inertial observers) with that instrument.  (Such observer-instrument relative veloci-
ties are parameterized by dv .)  Then the various observers involved must at that event of 
multiple coincidence read from the display of that particular instrument the same num-
bers – for the simple reason that there are no other numbers there to be read.  This is the 
(trivial) physical meaning of numerical invariance, which is reflected also in form invari-
ance [cf. Eqs. (3) and (8), above].  Since the observers’ field points are notional (mathe-
matical points), their “collisions” with the instrument cause no physical disruption, such 
as would occur in the case of covariance (multiple instruments, each a composition of 
matter, in physical coincidence).  Since Maxwell’s equations are not involved, there is no 
universal constancy of c.  All inertial observers honor the relativity principle by using the 
same field equations – but these are Hertz’s, not Maxwell’s.  Hertz’s equations lack 
spacetime symmetry and assert a formal effect upon light speed of detector velocity dv .  
(This of course requires the development of a new kinematics [1], in conjunction with 
higher-order refinement of the Hertzian equations themselves [2,3].)  

It will be apparent that two quite distinct ideas of “invariance,” hence of “relativ-
ity” are involved.  The Maxwell-Einstein idea is that for different inertial observers the 
“laws of nature” describing the field are the same because, when each observer is 
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equipped with his own “private” field-measuring instrument and performs the same 
measurement operations, each by replicating the experimental procedures of the others 
will measure (when field points coincide) not the same numbers but sets of numbers co-
variantly related.  Such a conception of what motional “relativity” is about evidently in-
corporates a physical assumption of replicability of experiments, whether in the same 
frame or in different frames, either simultaneously or sequentially.   

The Hertzian idea is entirely different and in a sense more primitive.  It is that the 
job of physics is to describe what is out there in nature (entirely apart from notional ob-
servers), on a one-time, one-place, one-occurrence basis.  Such description must be in-
variant – that is, independent of state of motion of any observers.  In the case of fields, 
the essential element that is “out there” is the absorber or field detector – that which 
“measures,” or by localizing “creates,” the field.  Only a single instrument is involved in 
any (unique) episode of measurement, although multiple observers may be present.  Rep-
licability of experiments is not assumed (nor is it, at the strictly classical level, denied).  
The mathematics effectuating the Maxwell-Einstein view interprets “invariance” to mean 
covariance – the linear “scrambling” of field components – which by definition discards 
numerical invariance.  The mathematics effectuating the Hertzian view demands true in-
variance, whereby all symbols appearing in the “laws of nature” [e.g., the field equations, 
Eq. (2)] transform in place without altered relationships, as in Eqs. (3) and (8), so that 
both formal and numerical invariance are attained. 

At the classical level of physical description there is no obvious basis for prefer-
ring one of these rival types of “relativity” and “invariance” over the other.  But when we 
consider the quantum limit of measurement theory, or address the weak-field (one-
quantum) limit of field theory, the superiority of the more primitive (or less assumption-
laden) Hertzian version becomes at once evident.  In a word, the Maxwell-Einstein field 
theory works only where there are many field quanta present – enough in principle that 
sufficient numbers are absorbed by each notional detector, co-moving with its own iner-
tial observer, to iron-out statistical fluctuations.  In that case the smoothed numbers dis-
played on each detector are covariantly related.  But, where there are so few field quanta 
present that this smoothing ceases to be effective, covariance fails catastrophically.  Thus 
if the field is so weak that only a single photon is present, and two macroscopic detection 
instruments compete for it, only one can “win.”  That is, only one of these instruments 
can successfully “measure” the field.  The other must register zero – which cannot be co-
variantly related to anything.  So, in the weak-field limit the model of a plurality of “pri-
vate” measuring instruments (underlying the covariance-based conception of “relativity”) 
fails – as does the assumption of replicability of their measurements. 

The Hertzian type of relativity, based on invariance, does not fail in either weak-
field or strong-field limit.  When a single “public” instrument is present in a field of arbi-
trary strength, it must contend with simple statistical fluctuations (more severe as the 
field weakens), but in a straightforward way – without the complication of competition 
for field quanta with other macro instruments (notionally) present at the same place and 
time.  There is no assumption of replicability of measurements made simultaneously at a 
given place by a plurality of macro instruments, such as underlies the Maxwell-Einstein 
picture of sets of measured field-component numbers covariantly related.  The latter 
“classical” conception is counter-indicated by all that the twentieth century has taught us 
about the physics of the quantum world.  To put it in a nutshell, covariance fails prima 
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facie if there are more observers-cum-detectors present than field quanta – for in that case 
the competition is too fierce and some observers must fail to detect any field at all. 

In sum:  At high field intensities either the Maxwell-Einstein picture (covariance 
with many inertial-observers-cum-detectors) or the Hertz picture (invariance with many 
observers of a single detection instrument) will work.  But in the low-field limit only the 
Hertz picture remains conceptually viable and compatible with quantum physics. 
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